This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Addition Complexes of Tetrais(t-Butylisocyanide)Cobalt(II) Perchlorate with Nitrogen Bases

Clifford A. L. Becker ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Bahrain, Bahrain, Arabian Gulf

To cite this Article Becker, Clifford A. L.(1992) 'Addition Complexes of Tetrais(t-Butylisocyanide)Cobalt(II) Perchlorate with Nitrogen Bases', Journal of Coordination Chemistry, 26: 3, 231 - 236
To link to this Article: DOI: 10.1080/00958979209409218
URL: http://dx.doi.org/10.1080/00958979209409218

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


ADDITION COMPLEXES OF TETRAKIS(t-BUTYLISOCYANIDE)COBALT(II) PERCHLORATE WITH NITROGEN BASES

CLIFFORD A. L. BECKER
Department of Chemistry, University of Bahrain, P.O. Box 32038, Bahrain, Arabian Gulf
(Receited 22 November 1991; in final form 19 February 1992)

Abstract

Reaction of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ with selected aromatic and cyclic aliphatic amines and thioureas, either by dissolution or digestion, leads to complexes of the form $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{~L}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{nH}_{2} \mathrm{O}$; $\mathrm{L}=\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \quad 3-\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}, \quad 4-\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}, \quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}, \quad \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}, \quad 3-\mathrm{MeC}_{5} \mathrm{H}_{9} \mathrm{NH}, \quad 4-\mathrm{MeC}_{5} \mathrm{H}_{9} \mathrm{NH}$, $\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NH}_{2}, \mathrm{EtHNC}(\mathrm{S}) \mathrm{NHEt}$. Steric hindrance decreases reactivity of the amine and stability of the complex. Characterization by IR, diffuse reflectance electronic spectra, and magnetic susceptibility suggests tetragonal coordination.

Keywords: Alkylisocyanide, cobalt(II) complexes, addition complexes, nitrogen bases.

INTRODUCTION

Coordination of five organoisocyanide ligands with cobalt(II) perchlorate is well-established for both alkylisocyanides ${ }^{1-4}$ and arylisocyanides, ${ }^{1,5-9}$ so synthesis of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}{ }^{10}$ was unexpected. Colour changes between solid and solution suggest that a different coordination mode occurs when the complex is dissolved in Lewis bases. This present work investigates reactions between $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and nitrogen bases; complexes of the form $\left.\left[\mathrm{Co}(\mathrm{CNCMe})_{3}\right)_{4} \mathrm{~L}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{nH}_{2} \mathrm{O}$ are prepared.

Reaction of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ with aromatic amines is significantly different to the behaviour of arylisocyanide-Co(II) complexes. Treatment of $\left[\mathrm{Co}(\mathrm{CNR})_{5}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{nH}_{2} \mathrm{O}(\mathrm{R}=$ aryl $)$ with pyridine produces $\left[\mathrm{Co}(\mathrm{CNR})_{5}\right] \mathrm{ClO}_{4}$ in good yield. ${ }^{11,12}$

EXPERIMENTAL

Reagents

$\left[\mathrm{Co}(\mathrm{CNCMe})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ was prepared from commercial CNCMe_{3} (Fluka) as previously reported. ${ }^{10}$ Commercial amines (Fluka) were distilled from KOH and stored over molecular sieves (4A): pyridine ($\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$), α-picoline ($2-\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}$), β-picoline ($3-\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}$), γ-picoline ($4-\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}$), 2,6-lutidine ($2,6-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}$) sym-collidine ($2,4,6-\mathrm{Me}_{3} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}$), quinoline $\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right.$), quinaldine ($2-\mathrm{MeC}_{9} \mathrm{H}_{6} \mathrm{~N}$), 2-benzylpyridine $\left(2-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$, piperidine $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}\right)$, 2-methylpiperidine $\left(2-\mathrm{MeC}_{5} \mathrm{H}_{9} \mathrm{NH}\right)$, 3-methylpiperidine $\left(3-\mathrm{MeC}_{5} \mathrm{H}_{9} \mathrm{NH}\right)$, 4-methylpiperidine (4-MeC ${ }_{5} \mathrm{H}_{9} \mathrm{NH}$), N-methylpiperidine ($\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NMe}$), N-ethylpiperidine ($\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NEt}$), piperizine $\left(\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NMe}\right)$, morpholine $\left(\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right)$, and pyrrolidine $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NH}\right)$. Thiourea ($\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NH}_{2}$), N, N^{\prime}-diethylthiourea (EtHNC(S)NHEt) and N, N^{\prime}-diphenylthiourea ($\mathrm{PhHNC}(\mathrm{S}) \mathrm{NHPh}$) were used without further purification. Diethyl ether was filtered through alumina immediately before use.

Instrumentation

IR spectra were recorded on a Mattson Polaris FT-IR instrument. Diffuse reflectance electronic spectra were measured with an integrating sphere on a Shimadzu UV-365 over $860-240 \mathrm{~nm}$. Magnetic susceptibilities were measured at room temperature using a Johnson Matthey magnetic susceptibility balance. Effective magnetic moments were calculated assuming Curie Law behaviour. The Cl and some C, H, and N analyses were performed commercially; other C, H, and N analyses were obtained using a Carlo Erba CHN-O/S 1106 elemental analyzer. Microsamples were weighed on a Sartorius Ultramicro Electrobalance and sealed in tin capsules.

Typical preparations are given below.
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$
A 300 mg sample of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ was dissolved in $8.0 \mathrm{~cm}^{3}$ of pyridine and filtered through cotton. Then, $10.0 \mathrm{~cm}^{3}$ of ether was added dropwise while the solution was stirred. The reaction was chilled for 15 min in ice, then the blue microcrystals which had formed were filtered from a yellow solution. Yield: $305 \mathrm{mg}(83 \%)$. The complex can be recrystallized from $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} /$ ether and is air-stable.
$\left[\left(\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}\right.$
A 300 mg sample of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ was added to $5.0 \mathrm{~cm}^{3}$ of freshly-distilled piperidine, and the resulting slurry stirred for 15 min at room temperature. The solid changed from a beige to a blue colour. Sky blue microcrystals were filtered from the pale blue solution, washed twice with $3.0 \mathrm{~cm}^{3}$ portions of ether, and sucked dry in air. Yield: $340 \mathrm{mg}(90 \%)$. This compound decomposed in 6-8 days with desiccation.
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NH}_{2}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$
A 1.00 g sample of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ was slowly added to a solution of 1.56 g of $\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NH}_{2}$ ($1: 12.5$ mole ratio) in $75 \mathrm{~cm}^{3}$ ethanol, and stirred for 5 min at $25^{\circ} \mathrm{C}$. The beige solid rapidly produced a green suspension. Dark green microcrystals were filtered from a greenish-yellow solution, washed with $5.0 \mathrm{~cm}^{3}$ of ethanol, and sucked dry in air. Yield: $1.01 \mathrm{~g}(83 \%)$. This compound is air-stable.

RESULTS AND DISCUSSION

Diamagnetic susceptibilities for the ligands are tabulated in Table I. Physical properties for the new complexes in the solid-state are summarized in Table II; the complexes decompose in solution. The compounds do not have well-defined melting/decomposition ranges.

Syntheses of the complexes

Different reaction conditions are necessitated by differing solubilities of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ in the various amines. Solubility is relatively high in $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ and $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$, so that the starting material is dissolved and filtered through

TABLE I
Measured diamagnetic susceptibilities (cgs units).

Ligand	$\chi_{g} \times 10^{9}$	$\chi_{M} \times 10^{6}$
CNCMe_{3}	-647 ± 11	-53.8 ± 0.9
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	-560 ± 7	-44.3 ± 0.6
$3-\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}$	-581 ± 6	-54.1 ± 0.6
$4-\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}$	-607 ± 8.5	-56.5 ± 0.8
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$	-594 ± 9	-76.7 ± 1.2
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}^{3} \mathrm{NH}$	-661 ± 17	-56.3 ± 1.4
$3-\mathrm{MeC}_{5} \mathrm{H}_{9} \mathrm{NH}$	-687 ± 11	-68.1 ± 1.1
$4-\mathrm{MeC}_{5} \mathrm{H}_{9} \mathrm{NH}$	-676 ± 11	-67.0 ± 1.0
$\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$	-579 ± 12	-50.5 ± 1.0
$\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NH}_{2}$	-521 ± 8	-39.7 ± 0.6
$\mathrm{EtHNC}(\mathrm{S}) \mathrm{NHEt}^{2}$	-591 ± 12	-78.1 ± 1.6

cotton; the complex is precipitated by addition of ether. Solubility is limited in other amines so that the starting material is simply digested in the amine, and ether used for washing and drying. Reaction of thioureas requires an inert solvent. Initial reactions were performed under anhydrous conditions, before observation indicated that the reactions are not air or moisture sensitive.

Limited stability prevents characterization of complexes with $2-\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}$, $2-\mathrm{MeC}_{5} \mathrm{H}_{9} \mathrm{NH}, \mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NMe}$, and $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NH}$. Complexes of the form [$\left.\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{~L}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, are believed to be initially prepared, but satisfactory elemental analyses could not be obtained. Compositions indicate partial loss of amine. The complexes with aliphatic amines in general, especially $3-\mathrm{MeC}_{5} \mathrm{H}_{9} \mathrm{NH}$ and $4-\mathrm{MeC}_{5} \mathrm{H}_{9} \mathrm{NH}$, tend to have limited stability and decompose within days whether desiccated or exposed to the atmosphere. Instability of complexes with 2- $\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}$ and possibly $2-\mathrm{MeC}_{5} \mathrm{H}_{9} \mathrm{NH}$ is probably due to steric hindrance of the amine. Severe steric hindrance in the amine appears to prevent complex formation altogether. No reaction was observed with $2,6-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}, 2,4,6-\mathrm{Me}_{3} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}, 2-\mathrm{MeC}_{9} \mathrm{H}_{6} \mathrm{~N}$, $2-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NMe}$ or $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NEt}$; unreacted starting material was recovered in good yield. Decomposition of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ was observed on attempted reaction with $\mathrm{PhHNC}(\mathrm{S}) \mathrm{NHPh}$.

Characterization of the complexes

Nujol-mull IR spectra, diffuse reflectance electronic spectra and magnetic susceptibilities have been measured (see Table II). Physical measurements are compatible with tetragonal coordination, i.e., trans- $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{~L}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{nH}_{2} \mathrm{O}$. The $\mathrm{H}_{2} \mathrm{O}$ molecule, which may or may not be present depending on the N -ligand and method of preparation, is probably not coordinated (unsplit $v(\mathrm{O}-\mathrm{H})$ patterns). The $v(-\mathrm{N} \equiv \mathrm{C})$ pattern of one strong band with a lower-energy, unresolved shoulder is characteristic for a distorted tetragonal arrangement of four organoisocyanide ligands, as in trans- $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{ClO}_{4}\right)_{2}\right], \mathrm{R}=2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3},{ }^{13} 2,6-\mathrm{Et}_{2} \mathrm{C}_{6} \mathrm{H}_{3} .{ }^{14}$ Regular arrangement of the four RNC ligands ($D_{4 h}$) should give rise to a single $v(-\mathrm{N} \equiv \mathrm{C})$ mode. The weak band at $2020-2035 \mathrm{~cm}^{-1}$, seen also in the free ligand and starting material, is probably non-fundamental.
TABLE II
Physical properties for addition complexes of tetrakis(t-butylisocyanide)cobalt(II) perchlorate.

Compound/colour	IR spectra ${ }^{\text {a }}$		Magnetic suscept.	Elemental analysis			found/calc
	$v(-\mathrm{N} \equiv \mathrm{C})$	spectra ${ }^{\text {b }}$	$\chi_{g} \times 10^{6} / \mu_{\text {eff }}$	C	H	N	Cl
$\left[\mathrm{Co}(\mathrm{CNCMe} 3)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	2210 vs	$632 \mathrm{br}(0.54)$	1.50 ± 0.03	39.48	6.30	9.21	11.65
Pale blue	$\sim 2176 \mathrm{w}$ (sh)	324 (1.10)	$1.90 \pm 0.02 \mathrm{BM}$	39.21	6.30	9.18	11.94
	2021 w	~ 264 sh (1.10)					
		$\sim 248 \mathrm{sh}$ (1.11)					
$\left.\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(4-\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\sim 2212 \mathrm{w}$ (sh)	$638 \mathrm{br}(0.60)$	1.85 ± 0.04	48.46 .	6.47	10.84	8.95
Medium blue	2204 vs	324 (1.10)	$2.09 \pm 0.02 \mathrm{BM}$	48.37	6.34	10.58	9.06
	$\sim 2176 \mathrm{vw}(\mathrm{sh})$	252 (1.13)					
	$\sim 2168 \mathrm{vw}(\mathrm{sh})$						
	2026w						
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(3-\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	2213 vs	$634 \mathrm{br}(0.50)$	2.74 ± 0.04	48.95	6.52	10.55	8.80
Pale blue	2178 w(sh)	≈ 390 sh	$2.49 \pm 0.02 \mathrm{BM}$	48.37	6.34	10.58	9.06
	2025 w	324 (1.06)					
		254 (1.21)					
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	2213 vs	636 br (0.50)	1.84 ± 0.04	52.66	6.05	9.70	8.48
Pale green	$\sim 2180 \mathrm{w}$ (sh)	$\approx 400 \mathrm{sh}$	$2.22 \pm 0.02 \mathrm{BM}$	52.66	6.14	9.64	8.74
	2025 w	$\sim 308 \mathrm{sh}$ (1.17)					
		$\approx 260 \mathrm{br}$ (1.15)					
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	2210 vs	$636 \mathrm{br}(0.43)$	2.72 ± 0.02	47.43	7.90	10.93	9.09
Pale sky blue	$\sim 2176 \mathrm{w}$ (sh)	355 (0.88)	$2.43 \pm 0.01 \mathrm{BM}$	47.37	7.69	11.05	9.32
	2032 w	294 (1.10)					
		258 (1.21)					

$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(4-\mathrm{McC}_{5} \mathrm{H}_{9} \mathrm{NH}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\sim 2236 \mathrm{w}(\mathrm{sh})$	~ 670 sh (0.49) ${ }^{\text {c }}$	1.53 ± 0.03	47.13	7.83	10.46	8.65
Pale sky blue	$\approx 2217 \mathrm{w}$ (sh)	$\sim 636 \mathrm{sh}(0.49)^{\text {c }}$	$2.00 \pm 0.01 \mathrm{BM}$	47.64	8.00	10.42	8.79
	2205 vs	358 (0.93)					
	~ 2171 w(sh)	$\sim 290 \operatorname{sh~(1.12)~}$					
	2029 w	258 (1.21)					
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left(3-\mathrm{MeC}_{5} \mathrm{H}_{9} \mathrm{NH}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	2206 vs	$\sim 670 \operatorname{sh}(0.48){ }^{\text {c }}$	1.63 ± 0.07	46.94	7.82	10.56	8.86
Pale sky blue	$\approx 2173 \mathrm{vw}(\mathrm{sh})$	$\sim 620 \operatorname{sh}(0.48){ }^{\text {c }}$	$2.05 \pm 0.03 \mathrm{BM}$	47.64	8.00	10.42	8.79
	$\sim 2133 \mathrm{vw}$	361 (1.03)					
	2029 w	$\approx 300 \mathrm{sh}(1.20)$					
		256 (1.23)					
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left\{\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	2212 vs	648sh (0.45)	1.79 ± 0.02	43.14	7.01	10.88	8.95
Pale sky blue	2176 w (sh)	349 (0.90)	$2.07 \pm 0.01 \mathrm{BM}$	42.97	7.21	10.74	9.06
	2029 w	302 (1.10)					
		258 (1.20)					
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NH}_{2}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	2202 vs	$\sim 650 \mathrm{sh}(0.88)^{\text {c }}$	192 ± 0.02	35.05	5.93	14.88	9.41
Dark green	$\sim 2166 \mathrm{w}(\mathrm{sh})$	~ 610 sh $(0.88)^{\text {c }}$	$2.07 \pm 0.01 \mathrm{BM}$	35.58	5.97	15.09	9.55
	2037 w	390 (1.17)					
		355 (1.16)					
		315 (1.21)					
		$\sim 260 \mathrm{sh}(1.18)$					
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\{\mathrm{EtHNC}(\mathrm{S}) \mathrm{NHEt}\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	~ 2220 vw(sh)	$\sim 700 \mathrm{sh}(0.89)^{\text {c }}$	1.40 ± 0.02	41.73	7.12	12.94	8.17
Dark yellow-green	2194 vs	$\sim 630 \mathrm{sh}(0.89){ }^{\text {c }}$	$1.99 \pm 0.01 \mathrm{BM}$	42.15	7.07	13.11	8.29
	$\sim 2157 \mathrm{vw}$ (sh)	$\approx 444 \operatorname{sh}(1.06)$					
	2032 w	396 (1.18)					
		~354sh (1.19)					
		329 (1.23)					
		$\sim 262(1.18)$					

[^0]Effective magnetic moments, $1.90-2.50 \mathrm{BM}$, are within the range observed for low-spin Co(II) complexes, $2.0-2.7 \mathrm{BM} .^{15}$ This is compatible with tetragonal coordination by strong field ligands. The diffuse reflectance electronic spectra are also compatible with a tetragonal structure. Spectra differ primarily in whether the first band is simply very broad or is partially resolved into two or three bands. Physical properties suggest, but do not confirm, tetragonal coordination.

REFERENCES

1. A. Sacco, Gazz. Chim. Ital., 84, 370 (1954).
2. A. Sacco and M. Freni, Gazz. Chim. Ital., 89, 1800 (1959).
3. F.A. Cotton, T.G. Dunne and J.S. Wood, Inorg. Chem., 3, 1495 (1964).
4. P.M. Boorman, P.J. Craig and T.W. Swaddle, Can. J. Chem., 48, 838 (1970).
5. L. Malatesta and A. Sacco, Z. Anorg. Chem., 273, 247 (1953).
6. L. Malatesta, Prog. Inorg. Chem., 1, 283 (1959).
7. J.M. Pratt and P.R. Silverman, Chem. Comm., 117 (1967); J. Chem. Soc. A, 1286 (1967).
8. L. Malatesta and F. Bonati, "Isocyanide Complexes of Metals" (John Wiley, New York, 1969), Ch. 7.
9. C.A.L. Becker, Inorg. Chim. Acta, 27, L105 (1978).
10. C.A.L. Becker, A. Anisi, G. Myer and J.D. Wright, Inorg. Chim. Acta, 111, 11 (1986).
11. C.A.L. Becker, J. Inorg. Nucl. Chem., 37, 703 (1975).
12. C.A.L. Becker, Inorg. Nucl. Chem. Lett., 11, 295 (1975).
13. C.A.L. Becker and J.C. Cooper, Inorg. Chim. Acta, 158, 141 (1989).
14. C.A.L. Becker and J.C. Cooper, Inorg. Chim. Acta, 182, 25 (1991).
15. "JM Magnetic Susceptibility Balance Instruction Manual" (Johnson Matthey Chemicals, York Way Royston Hertfordshire SG8 5HJ, U.K.).

[^0]: ${ }^{a}$ The $v(-\mathrm{N} \equiv \mathrm{C})$ mode is given in cm^{-1}; $\mathrm{s}=$ strong, $\mathrm{w}=$ weak, $\mathrm{v}=\mathrm{very}, \mathrm{sh}=$ shoulder, $\mathrm{br}=$ broad. ${ }^{b}$ The $\lambda_{\max }(c)$ values are given in nm and $\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$. ${ }^{c}$ Multiple first band, $\lambda_{\text {max }}$ and ε estimated without Gaussian resolution.

